
GigaScience

ShinyLearner: A containerized benchmarking tool for machine-learning classification of
tabular data

--Manuscript Draft--

Manuscript Number: GIGA-D-19-00227

Full Title: ShinyLearner: A containerized benchmarking tool for machine-learning classification of
tabular data

Article Type: Technical Note

Funding Information: Brigham Young University Dr. Stephen R Piccolo

Abstract: Classification algorithms assign observations to groups based on patterns in data. The
machine-learning community have developed myriad classification algorithms, which
are employed in diverse life-science research domains. When applying such
algorithms, researchers face the challenge of deciding which algorithm(s) to apply in a
given research domain. Algorithm choice can affect classification accuracy
dramatically, so it is crucial that researchers optimize these choices based on empirical
evidence rather than hearsay or anecdotal experience. In benchmark studies, multiple
algorithms are applied to multiple datasets, and the researcher examines overall
trends. In addition, the researcher may evaluate multiple hyperparameter combinations
for each algorithm and use feature selection to reduce data dimensionality. Although
software implementations of classification algorithms are widely available, robust
benchmark comparisons are difficult to perform when researchers wish to compare
algorithms that span multiple software packages. Programming interfaces, data
formats, and evaluation procedures differ across software packages; and dependency
conflicts may arise during installation. To address these challenges, we created
ShinyLearner, an open-source project for integrating machine-learning packages into
software containers. ShinyLearner provides a uniform interface for performing
classification, irrespective of the library that implements each algorithm, thus facilitating
benchmark comparisons. In addition, ShinyLearner enables researchers to optimize
hyperparameters and select features via nested cross validation; it tracks all nested
operations and generates output files that make these steps transparent. ShinyLearner
includes a Web interface to help users more easily construct the commands necessary
to perform benchmark comparisons. ShinyLearner is freely available at
https://github.com/srp33/ShinyLearner.

Corresponding Author: Stephen R Piccolo, Ph.D.
Brigham Young University
Provo, UT UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Brigham Young University

Corresponding Author's Secondary
Institution:

First Author: Terry J Lee

First Author Secondary Information:

Order of Authors: Terry J Lee

Erica Suh

Kimball Hill

Stephen R Piccolo, Ph.D.

Order of Authors Secondary Information:

Additional Information:

Question Response

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

ShinyLearner: A containerized benchmarking tool for machine-learning

classification of tabular data

Stephen R. Piccolo1,*, Terry J. Lee1, Erica Suh1, Kimball Hill1

1 - Department of Biology, Brigham Young University, Provo, UT, USA

* - Please address correspondence to S.R.P. at stephen_piccolo@byu.edu.

Click here to access/download;Manuscript;msfile-1.pdf

Click here to view linked References

https://www.editorialmanager.com/giga/download.aspx?id=77739&guid=65edc88d-db9d-442d-877a-4c4c26a4bc29&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=77739&guid=65edc88d-db9d-442d-877a-4c4c26a4bc29&scheme=1
https://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2961&rev=0&fileID=77739&msid=5e43f7b5-9b35-44de-93a0-a540a6598ce6

Abstract1

Classification algorithms assign observations to groups based on patterns in data. The machine-learning2

community have developed myriad classification algorithms, which are employed in diverse life-science3

research domains. When applying such algorithms, researchers face the challenge of deciding which4

algorithm(s) to apply in a given research domain. Algorithm choice can affect classification accuracy5

dramatically, so it is crucial that researchers optimize these choices based on empirical evidence rather than6

hearsay or anecdotal experience. In benchmark studies, multiple algorithms are applied to multiple datasets,7

and the researcher examines overall trends. In addition, the researcher may evaluate multiple hyperparameter8

combinations for each algorithm and use feature selection to reduce data dimensionality. Although software9

implementations of classification algorithms are widely available, robust benchmark comparisons are difficult10

to perform when researchers wish to compare algorithms that span multiple software packages.11

Programming interfaces, data formats, and evaluation procedures differ across software packages; and12

dependency conflicts may arise during installation. To address these challenges, we created ShinyLearner, an13

open-source project for integrating machine-learning packages into software containers. ShinyLearner14

provides a uniform interface for performing classification, irrespective of the library that implements each15

algorithm, thus facilitating benchmark comparisons. In addition, ShinyLearner enables researchers to16

optimize hyperparameters and select features via nested cross validation; it tracks all nested operations and17

generates output files that make these steps transparent. ShinyLearner includes a Web interface to help users18

more easily construct the commands necessary to perform benchmark comparisons. ShinyLearner is freely19

available at https://github.com/srp33/ShinyLearner.20

Keywords: Machine learning, supervised learning, classification, software containers, benchmark, feature21

selection, algorithm optimization, model selection22

1

Background23

Classification falls under the category of supervised learning, a branch of machine learning. When24

performing classification, researchers seek to assign observations to distinct groups. For example, medical25

researchers use classification algorithms to identify patterns that predict whether patients have a particular26

disease, will respond positively to a particular treatment, or will survive a relatively long period of time after27

diagnosis[1–11]. Applications in molecular biology include annotating DNA sequencing elements,28

identifying gene structures, and predicting protein secondary structures[12].29

Typically, a classification algorithm is “trained” on a dataset that contains samples (observations) from two or30

more groups, and the algorithm identifies patterns that differ among the groups. If these patterns are reliable31

indicators of group membership, the algorithm will be able to accurately assign new samples to these groups32

and thus may be suitable for broader application. Different research applications require different levels of33

accuracy before classification algorithms are suitable for broader application. However, even small34

improvements in accuracy can provide large benefits. For example, if an algorithm predicts drug-treatment35

responses for 1000 patients and attains accuracy levels that are 2% higher than a baseline method, this36

algorithm would benefit 20 additional patients. Accordingly, a key focus of classification research in the life37

sciences is to identify generalizable ways to optimize prediction accuracy.38

The machine-learning community have developed hundreds of classification algorithms and have39

incorporated many of these implementations into open-source software packages[13–18]. Each algorithm has40

different properties, which affect its suitability for particular applications. In addition, most algorithms41

support hyperparameters, which alter the algorithms’ behavior and can affect the algorithms’ accuracy42

dramatically. In addition, feature-selection (or feature-ranking) algorithms can be used in complement to43

classification algorithms, helping to identify combinations of variables that are most predictive of group44

membership and aiding in data interpretation[19,20]. With this abundance of options to consider, researchers45

face the challenge of identifying which algorithm(s), hyperparameter combinations, and features are optimal46

for a particular dataset.47

To improve the odds of making successful predictions, researchers should choose algorithms,48

hyperparameters, and features based on empirical evidence rather than hearsay or anecdotal experience. Prior49

studies can provide insight into algorithm performance, but few studies evaluate algorithms comprehensively,50

and performance may vary widely for different types of data. One way to select these options empirically is51

via nested cross-validation[21]. With this approach, a researcher divides a single dataset into training and52

2

validation sets. Within each training set, the researcher divides the data further into training and validation53

subsets and then evaluates various options using these subsets. The top-performing option(s) are then used54

when making predictions on the outer validation set. Alternatively, a researcher might perform a benchmark55

study, applying (non-nested) cross validation to multiple datasets from a given research domain. After testing56

multiple algorithms, hyperparameters, and/or feature subsets, the researcher can examine overall trends and57

identify options that tend to perform well[22,23]. With either approach, it is ideal to evaluate a58

comprehensive set of options. However, several challenges make it difficult to perform such evaluations59

effectively:60

• Researchers may wish to compare algorithms that have been implemented in different software61

packages. Although many machine-learning packages allow users to execute algorithms62

programmatically, application programming interfaces (APIs) are not standardized, and they are63

implemented in diverse programming languages.64

• Different software implementations use different techniques for evaluating algorithm performance, so65

it is difficult to ensure that comparisons are consistent.66

• Input and output formats differ by software implementation, thus requiring custom efforts to prepare67

data and interpret results.68

• When installing the software, researchers typically must install a series of software dependencies.69

Installation requirements often differ by operating system, and versioning conflicts can arise[24].70

To reduce these barriers, we created ShinyLearner. For this open-source project, we have integrated existing71

machine-learning packages into containers, which provide a consistent interface for performing benchmark72

comparisons of classification algorithms. ShinyLearner can be installed on Linux, Mac, or Windows73

operating systems, with no need to install software dependencies other than the Docker containerization74

software. ShinyLearner currently supports 53 classification algorithms and 1300+ hyperparameter75

combinations across these algorithms; users can perform automatic hyperparameter tuning via nested cross76

validation. In addition, ShinyLearner supports 16 feature-selection algorithms, enabling researchers to reduce77

data dimensionality before performing classification (via nested cross validation). New algorithms can be78

integrated in an extensible manner.79

ShinyLearner is designed to be friendly to non-computational scientists—no programming is required. We80

provide a Web-based tool (http://bioapps.byu.edu/shinylearner) to guide users through the process of creating81

the Docker commands necessary to execute the software. ShinyLearner supports a variety of input formats82

and produces output files in “tidy data” format[25], thus making it easy to import results into external tools.83

3

Even though other machine-learning packages support nested cross validation, these evaluations may occur84

in a “black box.” ShinyLearner tracks all nested operations and generates output files that make this process85

transparent.86

Below we describe ShinyLearner in more detail and illustrate its use via benchmark evaluations. We evaluate87

10 classification algorithms and 10 feature-selection algorithms on 10 biomedical datasets. In addition, we88

assess the effects of hyperparameter optimization on predictive performance, provide insights on model89

interpretability, and consider practical elements of performing benchmark comparisons.90

Methods91

ShinyLearner encapsulates open-source, machine-learning packages into Docker images[26], which are92

available on Docker Hub (https://hub.docker.com/r/srp33/shinylearner/). Currently, ShinyLearner supports93

algorithms from scikit-learn, Weka, mlr, h2o, and Keras (with a TensorFlow backend)[13–15,27–29]. To94

facilitate user interaction, to harmonize execution across the tools, and to evaluate predictive performance,95

ShinyLearner uses shell scripts, Python scripts, R scripts, and Java code[30–32]; these are included in the96

Docker images. To perform an analysis, the user executes a shell command, specifying arguments to indicate97

the location(s) of the input files, which algorithms to use, whether to perform Monte Carlo or k-fold cross98

validation, etc. The analysis is executed within a container, and output files are saved to a directory that the99

user specifies. TensorFlow provides support for execution on graphical processing units, which requires a100

slightly different software configuration, so we provide a separate Docker image that enables this feature101

(https://hub.docker.com/r/srp33/shinylearner_gpu/). All changes to the ShinyLearner code are tested via102

continuous integration[33]; build status can be viewed at https://travis-ci.org/srp33/ShinyLearner.103

Figure S1 shows an example ShinyLearner command that a user might execute. For convenience, and to help104

users who have limited experience with Docker or the command line, we created a Web-based user interface105

where users can specify local data paths, choose algorithms from a list, and select other settings106

(https://bioapps.byu.edu/shinylearner). After the user has made these selections, the Web interface generates107

a Docker command, which the user can copy and paste; Windows Command Line, Mac Terminal, and Linux108

Terminal commands are generated. We used the R Shiny framework to build this web application[34].109

ShinyLearner interfaces with each third-party machine-learning package via shell scripts wrap that around110

the software’s API. For each algorithm, one shell script specifies the algorithm’s default hyperparameters. In111

most cases, additional shell scripts specify alternative hyperparameters. The classification algorithms in112

4

ShinyLearner span methodological categories, including linear models, kernel-based techniques, tree-based113

approaches, Bayesian models, distance-based methods, ensemble approaches, and neural networks. In114

selecting algorithms to include, we focused primarily on implementations that can handle discrete and115

continuous data values, support multiple classes, and produce probabilistic predictions. For each algorithm,116

we reviewed documentation for the third-party software and identified a representative variety of117

hyperparameter options. Admittedly, these selections are somewhat arbitrary and inexhaustive. However,118

they can be extended with additional options. We excluded some algorithm implementations and119

hyperparameter combinations because errors occurred when we attempted to execute them or because they120

failed to achieve reasonable levels of classification accuracy on simulated data.121

Additional algorithms (and hyperparameter combinations) can be incorporated into ShinyLearner. The sole122

requirements are that they have been implemented as free and open-source software and provide an API (that123

can be executed via Linux command-line scripts). Users who wish to extend ShinyLearner must:124

1. Identify any software dependencies that the new algorithm requires. If those dependencies are not125

currently included in the ShinyLearner image, the user must modify the ShinyLearner Dockerfiles126

accordingly.127

2. Create bash script(s) that accepts specific arguments and invoke the new algorithm.128

3. Request that these changes be included in ShinyLearner via a GitHub pull request.129

ShinyLearner supports the following input-data formats: tab-separated value (.tsv), comma-separated value130

(.csv), and attribute-relation file format (.arff). When tab-separated or comma-separated files are used,131

column names and row names must be specified; by default, rows must represent samples (observations) and132

columns must represent features (variables). However, transposed versions of these formats can be used133

(features as rows and samples as columns); in these cases, the user should use “.ttsv” or “.tcsv” as the file134

extension. ShinyLearner accepts files that have been compressed with the gzip algorithm (using “.gz” as the135

file extension). Users may specify more than one data file as input, after which ShinyLearner will identify136

sample identifiers that overlap among the files and merge on those identifiers. If the user specifies,137

ShinyLearner will scale numeric values, one-hot encode categorical variables[35], and impute missing values.138

ShinyLearner supports two schemes for evaluating predictive performance: Monte Carlo cross validation and139

k-fold cross validation[36,37]. In Monte Carlo cross validation, the data are split randomly into a training and140

validation set; the algorithm is allowed to access the class labels for the training data only. Later the algorithm141

makes predictions for the validation samples, and the accuracy of those predictions is evaluated using various142

metrics. Typically, this process is repeated many times to derive confidence intervals for the accuracy metrics.143

5

In k-fold cross validation, the process is similar, except that the data are partitioned into evenly sized groups144

and each group is used as a validation set through rounds of training and testing. When multiple algorithms145

or hyperparameter combinations are employed, ShinyLearner evaluates nested training and validation sets,146

with the goal of identifying the optimal combination for each algorithm. Then it uses these selections when147

making predictions on the outer validation set. Nested cross validation is also used for feature selection; a148

feature-selection algorithm ranks the features within each nested training set, and different quantities of149

top-ranked features are used to train the classification algorithm. The feature subsets that perform best are150

used in making the outer validation-set predictions. Hyperparameter optimization and feature selection may151

be combined; however, such analyses are highly computationally intensive for large benchmarks.152

All outputs are stored in tab-delimited files, thus enabling users to import results directly into external153

analysis tools. ShinyLearner produces output files that contain the following information for each154

combination of algorithm, hyperparameters, and cross-validation iteration: 1) predictions for each sample, 2)155

classification metrics, 3) execution times, and 4) standard output, including a log that indicates the arguments156

that were used, thus supporting reproducibility. When nested cross-validation is performed, ShinyLearner157

produces output for every hyperparameter combination that was tested in the nested folds and indicates158

which combination performed best for each algorithm.159

ShinyLearner supports the following classification metrics:160

• AUROC (Area under the receiver operating characteristic curve)[38]161

• Accuracy (proportion of samples whose discrete prediction was correct)162

• Balanced accuracy (to account for class imbalance)163

• Brier score[39]164

• F1 score[40]165

• False discovery rate166

• False negative rate167

• False positive rate168

• Matthews correlation coefficient[41]169

• Mean misclassification error170

• Negative predictive value171

• Positive predictive value172

• Recall (sensitivity)173

• True negative rate (specificity)174

6

• True positive rate (sensitivity)175

To calculate these metrics and to perform other data-processing tasks, ShinyLearner uses the AUC[42],176

mlr[15], dplyr[43], data.table[44], and readr[45] packages. For multiclass problems, ShinyLearner allows the177

underlying machine-learning packages to use whatever strategy they have implemented for classifying with178

multiple classes. ShinyLearner then calculates performance metrics in a one-versus-rest manner and averages179

results across the class options.180

When feature selection is performed, each algorithm produces a ranked list of features for each nested181

training set. To aid the user in understanding which features are most informative, ShinyLearner aggregates182

these ranked lists using the Borda count method[46]. These aggregate rankings are stored in tab-delimited183

output files.184

Availability of source code and requirements185

• Project name: ShinyLearner186

• Project home page: https://github.com/srp33/ShinyLearner187

• Operating system(s): Any operating system on which Docker can be installed188

• Programming languages: Java, Python, R, bash189

• Other requirements: Docker (https://docker.com)190

• License: MIT191

The steps of preparing the data and executing ShinyLearner for the results described in this article are in a192

Jupyter notebook (see https://github.com/srp33/ShinyLearner/blob/master/Demo/Execute_Algorithms.ipynb).193

The code for creating the figures in this manuscript can be found (and re-executed) in a Code Ocean capsule194

(https://doi.org/10.24433/CO.5449763.v1). We used the ggplot2 and cowplot packages[47,48] to create195

figures.196

Analyses197

ShinyLearner enables researchers to perform classification benchmark studies. To illustrate this functionality,198

we performed three types of benchmark: 1) basic classification with default hyperparameters, 2)199

classification with hyperparameter optimization, and 3) classification with feature selection. For each200

analysis, we used 10 classification algorithms:201

7

• keras/dnn - Deep neural networks (implemented in Keras/TensorFlow)[27,29,49]202

• mlr/h2o.randomForest - Random forests (implemented in mlr, h2o)[15,28]203

• mlr/mlp - Multilayer perceptron (mlr)[50]204

• mlr/xgboost - xgboost (mlr)[51]205

• sklearn/decision_tree - Decision tree (implemented in scikit-learn)[13,52]206

• sklearn/logistic_regression - Logistic regression with the LIBLINEAR solver207

(scikit-learn)[53]208

• sklearn/svm - Support vector machines (scikit-learn)[54]209

• weka/HoeffdingTree - Hoeffding tree (implemented in Weka)[14,55]210

• weka/MultilayerPerceptron - Multilayer perceptron (Weka)211

• weka/SimpleLogistic - Simple logistic regression (Weka)[56]212

In the third analysis, we used 10 feature-selection algorithms:213

• mlr/kruskal.test - Kruskal-Wallis rank sum test (mlr)[57]214

• mlr/randomForestSRC.rfsrc - Permuted random forests (mlr)[58]215

• sklearn/mutual_info - Mutual information (scikit-learn)[59]216

• sklearn/random_forest_rfe - Random forests—recursive feature elimination (scikit-learn)[60,61]217

• sklearn/svm_rfe - Support vector machines—recursive feature elimination (scikit-learn)[61]218

• weka/Correlation - Pearson’s correlation (Weka)[62]219

• weka/GainRatio - Information gain ratio (Weka)[52]220

• weka/OneR - OneR (Weka)[63]221

• weka/ReliefF (Weka)[64]222

• weka/SymmetricalUncertainty - Symmetrical uncertainty (Weka)[65]223

In each analysis, we used 5 rounds of Monte Carlo cross validation. For the second and third analyses, we224

used 3 rounds of nested Monte Carlo cross validation for each outer round of cross validation. In the third225

analysis, we evaluated the top-ranked 1, 3, 5, 10, 15, 20, 50, and 200 features and identified the best of these226

options via nested cross validation. In evaluating the results, we focused on area under the receiver operating227

characteristic curve (AUROC) because this metric can be applied to probabilistic predictions and accounts228

for class imbalance.229

As an initial test, we generated a “null” dataset using numpy[66]. We used this dataset to verify that230

ShinyLearner produces classification results in line with random-chance expectations when no signal is231

present. This dataset consisted of 20 numeric variables (mean = 0, standard deviation = 1) and 10 categorical232

8

variables across 500 simulated samples. AUROC values for all classification algorithms were near 0.5, as233

expected by random chance, irrespective of whether hyperparameter optimization or feature selection was234

performed (Figure S2).235

Next, we collected 10 biomedical datasets from the Penn Machine Learning Benchmarks repository[67]:236

• Acquired Immune Deficiency Syndrome (AIDS) categorical data[68]237

• Thyroid disease[52]238

• Breast cancer[69]239

• Dermatology[70]240

• Diabetes241

• Hepatitis[71]242

• Iris[72]243

• Liver disorder[73]244

• Molecular biology (promoter gene sequences)[74]245

• Yeast[75]246

These datasets vary by number of samples (minimum = 51; maximum = 7201) and number of features (min247

= 5; max = 172). For all datasets, we converted categorical variables to multiple binary variables using248

one-hot encoding. When executing ShinyLearner, we scaled numeric values using scikit-learn’s249

RobustScaler, which subtracts the median and scales the data based on the interquartile range[76];250

accordingly, this method is robust to outliers. In addition, we used ShinyLearner to impute missing values;251

this method uses the median for numeric variables and the mode for categorical variables.252

Classification analysis with default hyperparameters253

Initially, we applied 10 classification algorithms to 10 biomedical datasets using default hyperparameters.254

Most algorithms made near-perfect predictions for the Thyroid, Dermatology, and Iris datasets, whereas255

predictions were less accurate overall for the remaining datasets (Figure 1). The weka/HoeffdingTree and256

sklearn/decision_tree algorithms often underperformed relative to the other algorithms (Figure 2).257

Indeed, for half of the datasets, weka/HoeffdingTree performed as poorly or worse than would be258

expected by random chance. The remaining 8 classification algorithms performed relatively well, but259

predictive performance varied considerably across the datasets (Figure S3). For example, the AUROC for260

9

mlr/mlp and sklearn/logistic_regression was 0.07 higher than the median on the AIDS dataset; the261

AUROC for sklearn/svm was 0.14 lower than the median.262

10

molecular−biology_promoters yeast

iris liver−disorder

diabetes hepatitis

breast−cancer dermatology

analcatdata_aids ann−thyroid

0.6 0.8 1.0 0.6 0.8 1.0

AUROC (median per iteration)

Algorithm

keras/dnn

mlr/h2o.randomForest

mlr/mlp

mlr/xgboost

sklearn/decision_tree

sklearn/logistic_regression

sklearn/svm

weka/HoeffdingTree

weka/MultilayerPerceptron

weka/SimpleLogistic

263

Figure 1: Classification performance per dataset (default hyperparameters). We evaluated the264

predictive performance of 10 classification algorithms on 10 biomedical datasets. These results were265

generated using default hyperparameters for each algorithm. We measured predictive performance using the266

11

receiver operating characteristic curve (AUROC) and calculated the median across 5 Monte Carlo iterations.267

Predictive performance differed considerably across and within the datasets.268

12

weka/MultilayerPerceptron weka/SimpleLogistic

sklearn/svm weka/HoeffdingTree

sklearn/decision_tree sklearn/logistic_regression

mlr/mlp mlr/xgboost

keras/dnn mlr/h2o.randomForest

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

AUROC relative to median (per dataset)

Description

analcatdata_aids

ann−thyroid

breast−cancer

dermatology

diabetes

hepatitis

iris

liver−disorder

molecular−biology_promoters

yeast

269

Figure 2: Classification performance per algorithm relative to other classification algorithms (default270

hyperparameters). We evaluated the predictive performance of 10 classification algorithms on 10271

biomedical datasets. These results were generated using default hyperparameters for each algorithm. For272

each dataset, we calculated the AUROC for each algorithm relative to the median across all algorithms. The273

13

weka/HoeffdingTree and sklearn/decision_tree algorithms underperformed in comparison to the274

other algorithms.275

14

Across the Monte Carlo iterations for each dataset, the predictive performance of276

sklearn/decision_tree and weka/MultilayerPerceptron varied most, whereas277

weka/HoeffdingTree varied least (in part because AUROC was frequently 0.5) (Figure S4). The278

keras/dnn and mlr/h2o.randomForest algorithms took longest to execute, whereas sklearn/svm and279

sklearn/logistic_regression were among the fastest (and most accurate) algorithms (Figure S5). Two280

pairs of classification algorithms use similar theoretical approaches but were implemented in different281

machine-learning libraries; multilayer perceptron was implemented in Weka and mlr; logistic regression was282

implemented in Weka and scikit-learn. The AUROC values were strongly—but not perfectly—correlated283

between these pairs of implementations (Figures S6 and S7).284

With the exception of sklearn/decision_tree, all classification algorithms produced sample-wise,285

probabilistic predictions. We examined these predictions for the Diabetes dataset and found that the range286

and shape of these predictions differed widely across the algorithms (Figure 3). Although many classification287

metrics, including AUROC, can cope with distributional differences, these differences must be considered in288

multiple classifier systems[77].289

15

weka/MultilayerPerceptron weka/SimpleLogistic

sklearn/svm weka/HoeffdingTree

sklearn/decision_tree sklearn/logistic_regression

mlr/mlp mlr/xgboost

keras/dnn mlr/h2o.randomForest

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

Probabilistic prediction of positive diagnosis per patient

C
ou

nt

290

Figure 3: Sample-level predictions for each algorithm on the Diabetes dataset (default291

hyperparameters). The Diabetes dataset includes a class variable indicating whether or not patients292

received a positive diagnosis. Each panel of this figure shows positive-diagnosis predictions for each293

classification algorithm. All algorithms except sklearn/decision_tree produced probabilistic294

predictions. The range and distribution of these predictions differed greatly across the algorithms.295

16

Classification analysis with hyperparameter optimization296

In the second analysis, we applied the same classification algorithms to the same datasets but allowed297

ShinyLearner to perform hyperparameter optimization via nested cross validation. As few as 2298

(mlr/xgboost) and as many as 95 (sklearn/decision_tree and weka/MultilayerPerceptron)299

hyperparameter combinations were available for each algorithm. In nearly every example, classification300

performance improved after hyperparameter optimization (Figure 4), sometimes dramatically. The301

performance improvements were most drastic for the weka/HoeffdingTree and302

sklearn/decision_tree algorithms, which often performed poorly with default parameters.303

17

weka/MultilayerPerceptron weka/SimpleLogistic

sklearn/svm weka/HoeffdingTree

sklearn/decision_tree sklearn/logistic_regression

mlr/mlp mlr/xgboost

keras/dnn mlr/h2o.randomForest
an

al
ca

td
at

a_
ai

ds
an

n−
th

yr
oi

d
br

ea
st

−c
an

ce
r

de
rm

at
ol

og
y

di
ab

et
es

he
pa

tit
is iri
s

liv
er

−d
is

or
de

r

m
ol

ec
ul

ar
−b

io
lo

gy
_p

ro
m

ot
er

s
ye

as
t

an
al

ca
td

at
a_

ai
ds

an
n−

th
yr

oi
d

br
ea

st
−c

an
ce

r
de

rm
at

ol
og

y
di

ab
et

es
he

pa
tit

is iri
s

liv
er

−d
is

or
de

r

m
ol

ec
ul

ar
−b

io
lo

gy
_p

ro
m

ot
er

s
ye

as
t

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

Dataset

P
er

ce
nt

 c
ha

ng
e

in
 A

U
R

O
C

 (
m

ed
ia

n
pe

r
ite

ra
tio

n)

304

Figure 4: Classification performance when optimizing vs. not optimizing hyperparameters. We tested305

10 classification algorithms on 10 biomedical datasets and used nested cross validation to select306

hyperparameters. To evaluate for change in predictive performance, we calculated the percent change in the307

median AUROC values when using optimized vs. default hyperparameters. Most algorithms demonstrated308

improved classification performance with optimized hyperparameters.309

18

ShinyLearner supports 53 hyperparameter combinations for the keras/dnn algorithm. Each of these310

combinations altered the algorithm’s performance at least to a small degree on every dataset (Figure S8). The311

Thyroid dataset varied least across the hyperparameter combinations, perhaps because the number of312

instances (n = 7200) was nearly 10 times larger than any other dataset. Generally, this algorithm performed313

better with a wider architecture containing only two layers. Having a wider structure greatly increases the314

parameter space of the network and allows it to learn more complex relationships among features, while315

limiting the network to only two layers prevents overfitting, a common problem when applying neural316

networks to datasets with a limited number of instances. In addition, adding dropout and L2 regularization317

also helps to prevent the network from overfitting. In tuning these hyperparameters, we found that a smaller318

dropout rate, more training epochs, and a smaller regularization rate resulted in higher AUROC values319

(Figure S9). Figure S10 illustrates for the Diabetes dataset that diagnosis predictions can differ considerably,320

depending on which hyperparameter combination is used.321

Classification analysis with feature selection322

In any dataset, some features are likely to be more informative than other features. We used ShinyLearner to323

perform feature selection (via nested cross validation) before classification. In total, we evaluated 100 unique324

combinations of feature-selection algorithm and classification algorithm (with default hyperparameters). In325

44% of cases, feature selection increased the median AUROC, whereas it decreased AUROC in 39% of cases326

(Figure 5). Feature selection sometimes improved the performance of weka/HoeffdingTree and327

sklearn/decision_tree, which were the lowest performers without feature selection.328

19

weka/MultilayerPerceptron weka/SimpleLogistic

sklearn/svm weka/HoeffdingTree

sklearn/decision_tree sklearn/logistic_regression

mlr/mlp mlr/xgboost

keras/dnn mlr/h2o.randomForest
an

al
ca

td
at

a_
ai

ds
an

n−
th

yr
oi

d
br

ea
st

−c
an

ce
r

de
rm

at
ol

og
y

di
ab

et
es

he
pa

tit
is iri
s

liv
er

−d
is

or
de

r

m
ol

ec
ul

ar
−b

io
lo

gy
_p

ro
m

ot
er

s
ye

as
t

an
al

ca
td

at
a_

ai
ds

an
n−

th
yr

oi
d

br
ea

st
−c

an
ce

r
de

rm
at

ol
og

y
di

ab
et

es
he

pa
tit

is iri
s

liv
er

−d
is

or
de

r

m
ol

ec
ul

ar
−b

io
lo

gy
_p

ro
m

ot
er

s
ye

as
t

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

Dataset

P
er

ce
nt

 c
ha

ng
e

in
 A

U
R

O
C

 a
fte

r
fe

at
ur

e
se

le
ct

io
n

329

Figure 5: Classification performance when performing feature selection vs. not performing feature330

selection. In combination with classification, we performed feature selection via nested cross validation on331

10 biomedical datasets. For each algorithm, we used default hyperparameters. These plots show the percent332

change in the median AUROC when using vs. not using feature selection. Although the effects of feature333

selection varied across the algorithms, median AUROCs increased in many cases.334

20

Figure 6 illustrates the relative predictive ability of each combination of feature-selection and classification335

algorithms. The mlr/randomForestSRC.rfsrc and sklearn/random_forest_rfe algorithms336

performed best on average; both approaches use the Random Forests algorithm to evaluate feature relevance.337

The weka/OneR algorithm, which evaluates a single feature at a time in isolation, performed worst. Across338

the datasets, the combination of mlr/randomForestSRC.rfsrc (feature selection) and mlr/xgboost339

(classification) performed best. Perhaps surprisingly, the combination of sklearn/svm_rfe (feature340

selection) and sklearn/svm (classification), which are both based on Support Vector Machines, was ranked341

in the bottom quartile.342

21

weka/SymmetricalUncertainty

weka/ReliefF

weka/OneR

weka/GainRatio

weka/Correlation

sklearn/svm_rfe

sklearn/random_forest_rfe

sklearn/mutual_info

mlr/randomForestSRC.rfsrc

mlr/kruskal.test

ke
ras/d

nn

mlr/h
2o.r

andomForest

mlr/m
lp

mlr/x
gboost

sk
learn

/decis
ion_tre

e

sk
learn

/lo
gist

ic_
regress

ion

sk
learn

/sv
m

weka
/H

oeffd
ingTre

e

weka
/M

ultil
ay

erP
erce

ptro
n

weka
/S

im
pleLogist

ic

Classification algorithm

F
ea

tu
re

−
se

le
ct

io
n

al
go

rit
hm

4.5

5.0

5.5

6.0

Average
rank

343

Figure 6: Performance for each combination of classification and feature-selection algorithm. This344

figure shows classification results for the nested cross-validation folds across each combination of345

feature-selection algorithm and classification algorithm. Averaged across all datasets and classification346

algorithms, we ranked the feature-selection algorithms based on AUROC values attained for nested347

validation sets. For simplicity and consistency across the datasets, this figure shows only the results when the348

top-5 features were used. Higher average ranks indicate better classification performance.349

22

In seeking to identify the most informative features, ShinyLearner evaluated various quantities of top-ranked350

features via nested cross validation. Figure 7 illustrates the relative performance of each of these quantities351

on each dataset. In all cases but one, using one feature performed worst. Generally, a larger number of352

features resulted in higher AUROC values. However, more features sometimes decreased performance. For353

example, on the breast-cancer dataset, the highest AUROC values were attained using 3 out of 14 features.354

23

200

50

20

15

10

5

3

1

analca
tdata_aids

ann−thy
roid

breast−
ca

nce
r

derm
atology

diabetes

hepatiti
s iris

liv
er−

diso
rder

molecu
lar−

biology_
promoters

ye
ast

Dataset

N
um

be
r

of
 fe

at
ur

es

0.00

0.25

0.50

0.75

1.00

355

Figure 7: Median classification performance of feature-selection algorithms by number of features.356

We applied feature selection to each dataset and selected the top x number of features. This figure shows357

which values of x resulted in the highest AUROC values for each dataset, averaged across all358

feature-selection algorithms. Different datasets had different quantities of features; this graph only shows359

results for x values relevant to each dataset. Accordingly, we scaled the AUROC values in each column360

between zero and one to ensure that the comparisons were consistent across all datasets. Higher values361

indicate better classification performance. Generally, a larger number of features resulted in better362

classification performance, but this varied across the datasets.363

24

ShinyLearner can inform users about which features are most informative for classification. In the364

Dermatology dataset, these feature ranks were highly consistent across the feature-selection algorithms365

(Figure S11). The goal of this classification problem was to predict a patient’s type of Eryhemato-Squamous366

disease. Elongation and clubbing of the rete ridges as well as thinning of the suprapapillary epidermis were367

most highly informative of disease type, whereas features such as the patient’s age were less informative.368

Discussion369

The machine-learning community has developed an abundance of algorithms and software implementations370

of those algorithms. Life scientists use these resources for many research applications. But they face the371

challenge of identifying which algorithms and hyperparameters will be most accurate and which features are372

most informative for a given dataset. Many researchers limit classification analyses to a single algorithm,373

perhaps one that is familiar to them or that has been reported in the literature for a similar study. Others may374

try a large number of algorithms; however, performing benchmark comparisons in an ad hoc manner requires375

a considerable coding effort and can introduce biases if done improperly. Alternatively, some researchers376

may develop new algorithms without providing evidence that these algorithms outperform existing ones. We377

developed ShinyLearner as a way to simplify the process of performing classification benchmark studies.378

ShinyLearner does not implement any classification or feature-selection algorithm; rather, it serves as a379

wrapper around existing software implementations. Currently, algorithms from Weka, scikit-learn, mlr, h2o,380

and Keras are supported in ShinyLearner. In aggregate, these algorithms represent a diverse range of381

methodological approaches and thus can support comprehensive benchmark evaluations. On their own, each382

of the third-party tools encapsulated within ShinyLearner provides a way to optimize hyperparameters383

programmatically and perform feature selection. In addition, tools such as caret[17], KNIME[18], and384

Orange[78] provide these options. Thus, in situations where a researcher has programming expertise and is385

satisfied with the algorithms and tuning functionality available in one of those tools, the researcher might386

prefer to use these tools directly rather than use ShinyLearner. ShinyLearner is most useful when a387

researcher:388

1. wishes to compare algorithms that have been implemented in multiple machine-learning packages,389

2. does not have programming expertise,390

3. desires to perform complex operations via nested cross validation, such as evaluating different sizes of391

feature subsets,392

25

4. wishes to analyze algorithm performance using a tool or programming language that is different than393

was used to perform classification,394

5. wishes to gain deeper insight into decisions made during nested cross validation, and/or395

6. seeks to evaluate the tradeoff between predictive accuracy and time of execution.396

ShinyLearner is limited to datasets that fit into computer memory. For larger datasets, frameworks such as397

Apache SystemML support distributed algorithm execution[79]; however, the number of algorithms398

implemented in these frameworks is still relatively small.399

The current release of ShinyLearner supports diverse classification algorithms and hyperparameter400

combinations; however, this collection is far from exhaustive. Using ShinyLearner’s extensible architecture,401

the research community can integrate additional algorithms and hyperparameter combinations. In addition,402

algorithm designers can use our framework to compare their algorithms against competing methods and403

disseminate their algorithms to the research community.404

Containers provide many advantages for software deployment. Tool installation and computational405

reproducibility are easier because all software components are encapsulated within the container, and406

container images can be archived and versioned[80]. One other benefit may be less apparent:407

containerization facilitates the use of diverse programming languages. Distinct components of ShinyLearner408

are implemented in 4 different programming languages. We chose this approach because we determined that409

each language was suited to specific types of tasks. We posit that the future of bioinformatics development410

will increasingly follow this pattern. Furthermore, we advocate for the approach of providing a graphical user411

interface, such as the Web-based tool we provided for ShinyLearner. Such tools make it easier for412

users—especially those who have limited command-line experience—to formulate Docker commands.413

Our analysis of 10 biomedical datasets, 10 classification algorithms, and 10 feature-selection algorithms414

confirmed that the choice of algorithm and hyperparameters has a considerable impact on classification415

performance and selected features. Although some algorithms typically performed better than others, no416

single algorithm consistently outperformed any other. This finding supports the “No Free Lunch”417

theorem[81] and confirms that multiple classifier systems hold promise for aggregating evidence across418

algorithms[82]. Also importantly, algorithm performance is likely to differ according to data characteristics.419

Algorithms that perform well on “wide” datasets (many features, few samples) may not perform as well on420

“tall” datasets. Algorithms that perform well with numeric data may not perform as well on categorical or421

mixed data. These differences highlight the importance of domain-specific benchmark comparisons.422

26

Declarations423

List of abbreviations424

AUROC = Area under receiver operating characteristic curve425

API = application programming interface426

Ethics approval and consent to participate427

Not applicable.428

Consent for publication429

Not applicable.430

Competing interests431

The authors declare that they have no competing interests.432

Funding433

SRP was supported by internal funds from Brigham Young University. TJL and KH were supported by434

fellowships from the Simmons Center for Cancer Research at Brigham Young University.435

Author’s contributions436

SRP, TJL, and KH helped to develop the software. SRP conceived of the software design with critical input437

from TJL and KH. ES and SRP performed the analyses described in the manuscript. All authors helped to438

write the manuscript.439

References440

27

1. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RCT, et al. Diffuse large B-cell lymphoma441

outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine.442

2002;8:68–74.443

2. Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, et al. Gene Expression-based444

Classification of Malignant Gliomas Correlates Better with Survival than Histological Classification. Cancer445

Res. 2003;63:1602–7.446

3. Yuan Y, Van Allen EM, Omberg L, Wagle N, Amin-Mansour A, Sokolov A, et al. Assessing the clinical447

utility of cancer genomic and proteomic data across tumor types. Nature Biotechnology. 2014;32:644–52.448

4. Bilal E, Dutkowski J, Guinney J, Jang IS, Logsdon BA, Pandey G, et al. Improving Breast Cancer Survival449

Analysis through Competition-Based Multidimensional Modeling. PLoS Computational Biology.450

2013;9:e1003047.451

5. Piccolo SR, Andrulis IL, Cohen AL, Conner T, Moos PJ, Spira AE, et al. Gene-expression patterns in452

peripheral blood classify familial breast cancer susceptibility. BMC medical genomics. 2015;8:72.453

6. Piccolo SR, Frey LJ. Clinical and molecular models of glioblastoma multiforme survival. International454

Journal of Data Mining and Bioinformatics. 2013;7:245–65.455

7. Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, et al. Prediction of Sepsis in the Intensive456

Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR medical457

informatics. 2016;4:e28.458

8. Szlosek DA, Ferrett J. Using Machine Learning and Natural Language Processing Algorithms to459

Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems. EGEMS460

(Washington, DC). 2016;4:1222.461

9. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S. A comprehensive evaluation of multicategory462

classification methods for microarray gene expression cancer diagnosis. Bioinformatics. 2005;21:631–43.463

10. Kim J-W, Sharma V, Ryan ND. Predicting Methylphenidate Response in ADHD Using Machine464

Learning Approaches. The International Journal of Neuropsychopharmacology. 2015;18:pyv052.465

11. Braman NM, Etesami M, Prasanna P, Dubchuk C, Gilmore H, Tiwari P, et al. Intratumoral and466

peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant467

chemotherapy based on breast DCE-MRI. Breast cancer research: BCR. 2017;19:57.468

28

12. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nature Reviews469

Genetics. 2015;16:321–32.470

13. Pedregosa F, Varoquaux G. Scikit-learn: Machine learning in Python. 2011.471

14. Frank E, Hall M, Holmes G, Kirkby R, Pfahringer B, Witten IH, et al. Weka-A Machine Learning472

Workbench for Data Mining. In: Maimon O, Rokach L, editors. Data Mining and Knowledge Discovery473

Handbook. 2nd ed. New York: Springer Science+Business Media, LLC; 2010. pp. 1269–77.474

15. Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Jones Z, et al. Mlr: Machine Learning in R. 2016.475

16. Piccolo SR, Frey LJ. ML-Flex : A Flexible Toolbox for Performing Classification Analyses In Parallel.476

Journal of Machine Learning Research. 2012;13:555–9.477

17. Kuhn M, others. Building predictive models in R using the caret package. Journal of statistical software.478

2008;28:1–26.479

18. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, et al. KNIME: The Konstanz Information480

Miner. Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer; 2007.481

19. Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection. Journal of Machine Learning482

Research. 2003;3:1157–82.483

20. Dougherty ER, Hua J, Sima C. Performance of Feature Selection Methods. Current Genomics.484

2009;10:365–74.485

21. Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC486

bioinformatics. 2006;7:91.487

22. Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support vector488

machines for microarray-based cancer classification. BMC bioinformatics. 2008;9:319.489

23. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we Need Hundreds of Classifiers to Solve490

Real World Classification Problems? Journal of Machine Learning Research. 2014;15:3133–81.491

24. Piccolo SR, Frampton MB. Tools and techniques for computational reproducibility. GigaScience.492

2016;5:30.493

25. Wickham H. Tidy Data. Journal of Statistical Software. 2014;59.494

26. Docker. Docker. https://www.docker.com/;495

29

27. Chollet F, others. Keras. 2015;496

28. Cook D. Practical machine learning with H2O: Powerful, scalable techniques for deep learning and AI. "497

O’Reilly Media, Inc."; 2016.498

29. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A system for large-scale499

machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).500

2016. pp. 265–83.501

30. Python Software Foundation. Python Language Reference, version 3.6. 2013.502

31. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R503

Foundation for Statistical Computing; 2019.504

32. Java Software | Oracle. https://www.oracle.com/java/;505

33. Fowler M. Continuous Integration. martinfowler.com.506

https://martinfowler.com/articles/continuousIntegration.html;507

34. Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J. Shiny: Web Application Framework for R. 2019.508

35. Harris D, Harris S. Digital design and computer architecture. Morgan Kaufmann; 2010.509

36. Geisser S. The Predictive Sample Reuse Method with Applications. Journal of the American Statistical510

Association. 1975;70:320–8.511

37. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection.512

International Joint Conference on Artificial Intelligence. 1995;14:1137–45.513

38. Green DM, Swets JA, others. Signal detection theory and psychophysics. Wiley New York; 1966.514

39. Brier GW. Verification of forecasts expressed in terms of probability. Monthly Weather Review.515

1950;78:1–3.516

40. Vickery B. Reviews: Van Rijsbergen, CJ Information retrieval. 2nd edn. London, Butterworths, I978.517

208pp. Journal of librarianship. Sage Publications Sage CA: Thousand Oaks, CA; 1979;11:237–7.518

41. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.519

Biochimica et Biophysica Acta (BBA) - Protein Structure. 1975;405:442–51.520

42. Ballings M, Van den Poel D. AUC: Threshold independent performance measures for probabilistic521

classifiers. 2013.522

30

43. Wickham H, François R, Henry L, Müller K. Dplyr: A Grammar of Data Manipulation. 2018.523

44. Dowle M, Srinivasan A. Data.Table: Extension of ‘data.Frame‘. 2018.524

45. Wickham H, Hester J, Francois R. Readr: Read Rectangular Text Data. 2018.525

46. Black D. Partial justification of the Borda count. Public Choice. 1976;28:1–15.526

47. Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016.527

48. Wilke CO. Cowplot: Streamlined Plot Theme and Plot Annotations for ’ggplot2’. 2017.528

49. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.529

50. Rosenblatt F. Principles of neurodynamics. Perceptrons and the theory of brain mechanisms. Cornell530

Aeronautical Lab Inc Buffalo NY; 1961.531

51. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd532

international conference on knowledge discovery and data mining. ACM; 2016. pp. 785–94.533

52. Quinlan JR. Induction of decision trees. Machine Learning. 1986;1:81–106.534

53. Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. LIBLINEAR: A library for large linear535

classification. Journal of Machine Learning Research. 2008;9:1871–4.536

54. Vapnik VN. Statistical learning theory. New York: Wiley; 1998.537

55. Hulten G, Spencer L, Domingos P. Mining time-changing data streams. ACM SIGKDD Intl Conf On538

Knowledge Discovery and Data Mining. ACM Press; 2001. pp. 97–106.539

56. Landwehr N, Hall M, Frank E. Logistic Model Trees. 2005;95:161–205.540

57. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. Journal of the American541

statistical Association. Taylor & Francis Group; 1952;47:583–621.542

58. Ishwaran H, Kogalur UB, Kogalur MUB. Package “randomForestSRC”. 2019;543

59. Cover TM, Thomas JA. Elements of information theory. John Wiley & Sons; 2012.544

60. Breiman L. Random Forests. Machine Learning. 2001;45:5–32.545

61. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector546

machines. Machine Learning. 2002;46:389–422.547

31

62. Pearson K. VII. Note on regression and inheritance in the case of two parents. proceedings of the royal548

society of London. The Royal Society London; 1895;58:240–2.549

63. Holte RC. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine550

Learning. 1993;11:63–90.551

64. Kononenko I. Estimating attributes: Analysis and extensions of RELIEF. In: Bergadano F, De Raedt L,552

editors. Machine Learning ECML94. Berlin / Heidelberg: Springer; 1994. pp. 171–82.553

65. Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical machine learning tools and techniques.554

Morgan Kaufmann; 2016.555

66. Walt S van der, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient Numerical556

Computation. Computing in Science & Engineering. 2011;13:22–30.557

67. Olson RS, La Cava W, Orzechowski P, Urbanowicz RJ, Moore JH. PMLB: A large benchmark suite for558

machine learning evaluation and comparison. BioData Mining. 2017;10:36.559

68. Simonoff JS. Analyzing Categorical Data. New York: Springer-Verlag; 2003.560

69. Michalski RS, Mozetic I, Hong J, Lavrac N. The Multi-purpose Incremental Learning System AQ15 and561

Its Testing Application to Three Medical Domains. Proceedings of the Fifth AAAI National Conference on562

Artificial Intelligence. AAAI Press; 1986. pp. 1041–5.563

70. Güvenir HA, Demiröz G, Ilter N. Learning differential diagnosis of erythemato-squamous diseases using564

voting feature intervals. Artificial Intelligence in Medicine. 1998;13:147–65.565

71. Diaconis P, Efron B. Computer-intensive methods in statistics. Scientific American. Scientific American,566

a division of Nature America, Inc. 1983;248:116–31.567

72. Fisher RA. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics.568

1936;7:179–88.569

73. Robinson D, Allaway SL, Ritchie CD, Smolski OR, Bailey AR. The use of artificial intelligence in the570

prediction of alcohol-induced fatty liver. MEDINFO 89: Proceedings of the Sixth Conference on Medical571

Informatics, Beijing, China, 16-20 October 1989 and Singapore, Republic of Singapore, 11-15 December572

1989. North Holland; 1989. p. 170.573

74. Harley CB, Reynolds RP. Analysis of E. Coli promoter sequences. Nucleic Acids Research.574

1987;15:2343–61.575

32

75. Horton P, Nakai K. A probabilistic classification system for predicting the cellular localization sites of576

proteins. Proceedings International Conference on Intelligent Systems for Molecular Biology.577

1996;4:109–15.578

76. Sklearn.Preprocessing.RobustScaler scikit-learn 0.21.2 documentation.579

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html;580

77. Ho TKT, Hull J, Srihari SNS, Member S. Decision combination in multiple classifier systems. IEEE581

Transactions on Pattern Analysis and Machine Intelligence. 1994;16:66–75.582

78. Demsar J, Zupan B, Leban G, Curk T. Orange: From experimental machine learning to interactive data583

mining. Knowledge Discovery in Databases: PKDD 2004. Berlin; 2004. pp. 537–9.584

79. Elgohary A, Boehm M, Haas PJ, Reiss FR, Reinwald B. Compressed linear algebra for large-scale585

machine learning. Proceedings of the VLDB Endowment. VLDB Endowment; 2016;9:960–71.586

80. Boettiger C. An introduction to Docker for reproducible research. ACM SIGOPS Operating Systems587

Review. 2015;49:71–9.588

81. Ho YY, Pepyne D. Simple Explanation of the No-Free-Lunch Theorem and Its Implications. Journal of589

Optimization Theory and Applications. 2002;115:549–70.590

82. Xu L, Krzyzak A, Suen C. Methods of combining multiple classifiers and their applications to591

handwriting recognition. IEEE Transactions on Systems Man and Cybernetics. 1992;22:418–35.592

33

Click here to access/download
Supplementary Material

giga-675181.pdf

https://www.editorialmanager.com/giga/download.aspx?id=77741&guid=63b66785-346c-438b-a9ed-535b0675e2f5&scheme=1

Click here to access/download
Supplementary Material

supp-1.pdf

https://www.editorialmanager.com/giga/download.aspx?id=77743&guid=a9500b75-795c-400e-8626-64996c7bdf1d&scheme=1

DEPARTMENT OF BIOLOGY

Dear Editors:

Thank you for reviewing our manuscript entitled, "ShinyLearner: A containerized benchmarking tool for
machine-learning classification." We propose this manuscript as a Technical Note, but we are flexible on
the format.

Our manuscript describes a new, open-source software tool, ShinyLearner, which facilitates benchmark
comparisons of classification algorithms. The manuscript also describes extensive analyses that
demonstrate our tool's usage and provide insight into the use of classification in biomedicine.

We have spent hundreds of hours developing ShinyLearner’s functionality, writing user documentation,
and simplifying the user experience. We have provided optimizations that do not exist in other tools. For
example, even though other tools support nested cross validation, these evaluations occur in a “black
box.” ShinyLearner tracks all nested operations and generates data files that make this process
transparent.

We declare no competing interests.

We confirm that all authors have approved the manuscript for submission.

The content has not been published or submitted for publication elsewhere, although we have
submitted a preprint on biorxiv.org.

Warm regards,

Stephen R. Piccolo, PhD
Assistant Professor
Department of Biology
Brigham Young University
(801) 422-7116
Stephen_Piccolo@byu.edu

BRIGHAM YOUNG UNIVERSITY – 4102 LSB – PROVO, UTAH 84602
(801) 422-2582 / FAX: (801) 422-0004

Personal Cover Click here to access/download;Personal Cover;Cover_Letter.pdf

mailto:Stephen_Piccolo@byu.edu
https://www.editorialmanager.com/giga/download.aspx?id=77803&guid=5d5a5a7a-fa6f-4a61-97f3-36fd2b9ef384&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=77803&guid=5d5a5a7a-fa6f-4a61-97f3-36fd2b9ef384&scheme=1

